你好,我是蒋德钧。
Redis缓存使用内存来保存数据,避免业务应用从后端数据库中读取数据,可以提升应用的响应速度。那么,如果我们把所有要访问的数据都放入缓存,是不是一个很好的设计选择呢?其实,这样做的性价比反而不高。
举个例子吧。MySQL中有1TB的数据,如果我们使用Redis把这1TB的数据都缓存起来,虽然应用都能在内存中访问数据了,但是,这样配置并不合理,因为性价比很低。一方面,1TB内存的价格大约是3.5万元,而1TB磁盘的价格大约是1000元。另一方面,数据访问都是有局部性的,也就是我们通常所说的“八二原理”,80%的请求实际只访问了20%的数据。所以,用1TB的内存做缓存,并没有必要。
为了保证较高的性价比,缓存的空间容量必然要小于后端数据库的数据总量。不过,内存大小毕竟有限,随着要缓存的数据量越来越大,有限的缓存空间不可避免地会被写满。此时,该怎么办呢?
解决这个问题就涉及到缓存系统的一个重要机制,即 缓存数据的淘汰机制。简单来说,数据淘汰机制包括两步:第一,根据一定的策略,筛选出对应用访问来说“不重要”的数据;第二,将这些数据从缓存中删除,为新来的数据腾出空间,
这节课上,我就来和你聊聊缓存满了之后的数据淘汰机制。通常,我们也把它叫作缓存替换机制,同时还会讲到一系列选择淘汰数据的具体策略。了解了数据淘汰机制和相应策略,我们才可以选择合理的Redis配置,提高缓存命中率,提升应用的访问性能。
不过,在学习淘汰策略之前,我们首先要知道设置缓存容量的依据和方法。毕竟,在实际使用缓存时,我们需要决定用多大的空间来缓存数据。
缓存容量设置得是否合理,会直接影响到使用缓存的性价比。我们通常希望以最小的代价去获得最大的收益,所以,把昂贵的内存资源用在关键地方就非常重要了。
就像我刚才说的,实际应用中的数据访问是具有局部性的。下面有一张图,图里有红、蓝两条线,显示了不同比例数据贡献的访问量情况。蓝线代表了“八二原理”表示的数据局部性,而红线则表示在当前应用负载下,数据局部性的变化。
我们先看看蓝线。它表示的就是“八二原理”,有20%的数据贡献了80%的访问了,而剩余的数据虽然体量很大,但只贡献了20%的访问量。这80%的数据在访问量上就形成了一条长长的尾巴,我们也称为“长尾效应”。
所以,如果按照“八二原理”来设置缓存空间容量,也就是把缓存空间容量设置为总数据量的20%的话,就有可能拦截到80%的访问。
为什么说是“有可能”呢?这是因为,“八二原理”是对大量实际应用的数据访问情况做了统计后,得出的一个统计学意义上的数据量和访问量的比例。具体到某一个应用来说,数据访问的规律会和具体的业务场景有关。对于最常被访问的20%的数据来说,它们贡献的访问量,既有可能超过80%,也有可能不到80%。
我们再通过一个电商商品的场景,来说明下“有可能”这件事儿。一方面,在商品促销时,热门商品的信息可能只占到总商品数据信息量的5%,而这些商品信息承载的可能是超过90%的访问请求。这时,我们只要缓存这5%的数据,就能获得很好的性能收益。另一方面,如果业务应用要对所有商品信息进行查询统计,这时候,即使按照“八二原理”缓存了20%的商品数据,也不能获得很好的访问性能,因为80%的数据仍然需要从后端数据库中获取。
接下来,我们再看看数据访问局部性示意图中的红线。近年来,有些研究人员专门对互联网应用(例如视频播放网站)中,用户请求访问内容的分布情况做过分析,得到了这张图中的红线。
在这条红线上,80%的数据贡献的访问量,超过了传统的长尾效应中80%数据能贡献的访问量。原因在于,用户的个性化需求越来越多,在一个业务应用中,不同用户访问的内容可能差别很大,所以,用户请求的数据和它们贡献的访问量比例,不再具备长尾效应中的“八二原理”分布特征了。也就是说,20%的数据可能贡献不了80%的访问,而剩余的80%数据反而贡献了更多的访问量,我们称之为重尾效应。
正是因为20%的数据不一定能贡献80%的访问量,我们不能简单地按照“总数据量的20%”来设置缓存最大空间容量。在实践过程中,我看到过的缓存容量占总数据量的比例,从5%到40%的都有。这个容量规划不能一概而论,是需要结合 应用数据实际访问特征 和 成本开销 来综合考虑的。
这其实也是我一直在和你分享的经验,系统的设计选择是一个权衡的过程:大容量缓存是能带来性能加速的收益,但是成本也会更高,而小容量缓存不一定就起不到加速访问的效果。一般来说, 我会建议把缓存容量设置为总数据量的15%到30%,兼顾访问性能和内存空间开销。
对于Redis来说,一旦确定了缓存最大容量,比如4GB,你就可以使用下面这个命令来设定缓存的大小了:
CONFIG SET maxmemory 4gb
不过, 缓存被写满是不可避免的。即使你精挑细选,确定了缓存容量,还是要面对缓存写满时的替换操作。缓存替换需要解决两个问题:决定淘汰哪些数据,如何处理那些被淘汰的数据。
接下来,我们就来学习下,Redis中的数据淘汰策略。
Redis 4.0之前一共实现了6种内存淘汰策略,在4.0之后,又增加了2种策略。我们可以按照是否会进行数据淘汰把它们分成两类:
会进行淘汰的7种策略,我们可以再进一步根据淘汰候选数据集的范围把它们分成两类:
我把这8种策略的分类,画到了一张图里:
下面我就来具体解释下各个策略。
默认情况下,Redis在使用的内存空间超过maxmemory值时,并不会淘汰数据,也就是设定的 noeviction策略。对应到Redis缓存,也就是指,一旦缓存被写满了,再有写请求来时,Redis不再提供服务,而是直接返回错误。Redis用作缓存时,实际的数据集通常都是大于缓存容量的,总会有新的数据要写入缓存,这个策略本身不淘汰数据,也就不会腾出新的缓存空间,我们不把它用在Redis缓存中。
我们再分析下volatile-random、volatile-ttl、volatile-lru和volatile-lfu这四种淘汰策略。它们筛选的候选数据范围,被限制在已经设置了过期时间的键值对上。也正因为此,即使缓存没有写满,这些数据如果过期了,也会被删除。
例如,我们使用EXPIRE命令对一批键值对设置了过期时间后,无论是这些键值对的过期时间是快到了,还是Redis的内存使用量达到了maxmemory阈值,Redis都会进一步按照volatile-ttl、volatile-random、volatile-lru、volatile-lfu这四种策略的具体筛选规则进行淘汰。
可以看到,volatile-ttl和volatile-random筛选规则比较简单,而volatile-lru因为涉及了LRU算法,所以我会在分析allkeys-lru策略时再详细解释。volatile-lfu使用了LFU算法,我会在第27讲中具体解释,现在你只需要知道,它是在LRU算法的基础上,同时考虑了数据的访问时效性和数据的访问次数,可以看作是对淘汰策略的优化。
相对于volatile-ttl、volatile-random、volatile-lru、volatile-lfu这四种策略淘汰的是设置了过期时间的数据,allkeys-lru、allkeys-random、allkeys-lfu这三种淘汰策略的备选淘汰数据范围,就扩大到了所有键值对,无论这些键值对是否设置了过期时间。它们筛选数据进行淘汰的规则是:
这也就是说,如果一个键值对被删除策略选中了,即使它的过期时间还没到,也需要被删除。当然,如果它的过期时间到了但未被策略选中,同样也会被删除。
接下来,我们就看看volatile-lru和allkeys-lru策略都用到的LRU算法吧。LRU算法工作机制并不复杂,我们一起学习下。
LRU算法的全称是Least Recently Used,从名字上就可以看出,这是按照最近最少使用的原则来筛选数据,最不常用的数据会被筛选出来,而最近频繁使用的数据会留在缓存中。
那具体是怎么筛选的呢?LRU会把所有的数据组织成一个链表,链表的头和尾分别表示MRU端和LRU端,分别代表最近最常使用的数据和最近最不常用的数据。我们看一个例子。
我们现在有数据6、3、9、20、5。如果数据20和3被先后访问,它们都会从现有的链表位置移到MRU端,而链表中在它们之前的数据则相应地往后移一位。因为,LRU算法选择删除数据时,都是从LRU端开始,所以把刚刚被访问的数据移到MRU端,就可以让它们尽可能地留在缓存中。
如果有一个新数据15要被写入缓存,但此时已经没有缓存空间了,也就是链表没有空余位置了,那么,LRU算法做两件事:
其实,LRU算法背后的想法非常朴素:它认为刚刚被访问的数据,肯定还会被再次访问,所以就把它放在MRU端;长久不访问的数据,肯定就不会再被访问了,所以就让它逐渐后移到LRU端,在缓存满时,就优先删除它。
不过,LRU算法在实际实现时,需要用链表管理所有的缓存数据,这会 带来额外的空间开销。而且,当有数据被访问时,需要在链表上把该数据移动到MRU端,如果有大量数据被访问,就会带来很多链表移动操作,会很耗时,进而会降低Redis缓存性能。
所以,在Redis中,LRU算法被做了简化,以减轻数据淘汰对缓存性能的影响。具体来说,Redis默认会记录每个数据的最近一次访问的时间戳(由键值对数据结构RedisObject中的lru字段记录)。然后,Redis在决定淘汰的数据时,第一次会随机选出N个数据,把它们作为一个候选集合。接下来,Redis会比较这N个数据的lru字段,把lru字段值最小的数据从缓存中淘汰出去。
Redis提供了一个配置参数maxmemory-samples,这个参数就是Redis选出的数据个数N。例如,我们执行如下命令,可以让Redis选出100个数据作为候选数据集:
CONFIG SET maxmemory-samples 100
当需要再次淘汰数据时,Redis需要挑选数据进入第一次淘汰时创建的候选集合。这儿的挑选标准是: 能进入候选集合的数据的lru字段值必须小于候选集合中最小的lru值。当有新数据进入候选数据集后,如果候选数据集中的数据个数达到了maxmemory-samples,Redis就把候选数据集中lru字段值最小的数据淘汰出去。
这样一来,Redis缓存不用为所有的数据维护一个大链表,也不用在每次数据访问时都移动链表项,提升了缓存的性能。
好了,到这里,我们就学完了除了使用LFU算法以外的5种缓存淘汰策略,我再给你三个使用建议。
一旦被淘汰的数据被选定后,Redis怎么处理这些数据呢?这就要说到缓存替换时的具体操作了。
一般来说,一旦被淘汰的数据选定后,如果这个数据是干净数据,那么我们就直接删除;如果这个数据是脏数据,我们需要把它写回数据库,如下图所示:
那怎么判断一个数据到底是干净的还是脏的呢?
干净数据和脏数据的区别就在于,和最初从后端数据库里读取时的值相比,有没有被修改过。干净数据一直没有被修改,所以后端数据库里的数据也是最新值。在替换时,它可以被直接删除。
而脏数据就是曾经被修改过的,已经和后端数据库中保存的数据不一致了。此时,如果不把脏数据写回到数据库中,这个数据的最新值就丢失了,就会影响应用的正常使用。
这么一来,缓存替换既腾出了缓存空间,用来缓存新的数据,同时,将脏数据写回数据库,也保证了最新数据不会丢失。
不过,对于Redis来说,它决定了被淘汰的数据后,会把它们删除。即使淘汰的数据是脏数据,Redis也不会把它们写回数据库。所以,我们在使用Redis缓存时,如果数据被修改了,需要在数据修改时就将它写回数据库。否则,这个脏数据被淘汰时,会被Redis删除,而数据库里也没有最新的数据了。
在这节课上,我围绕着“缓存满了该怎么办”这一问题,向你介绍了缓存替换时的数据淘汰策略,以及被淘汰数据的处理方法。
Redis 4.0版本以后一共提供了8种数据淘汰策略,从淘汰数据的候选集范围来看,我们有两种候选范围:一种是所有数据都是候选集,一种是设置了过期时间的数据是候选集。另外,无论是面向哪种候选数据集进行淘汰数据选择,我们都有三种策略,分别是随机选择,根据LRU算法选择,以及根据LFU算法选择。当然,当面向设置了过期时间的数据集选择淘汰数据时,我们还可以根据数据离过期时间的远近来决定。
一般来说,缓存系统对于选定的被淘汰数据,会根据其是干净数据还是脏数据,选择直接删除还是写回数据库。但是,在Redis中,被淘汰数据无论干净与否都会被删除,所以,这是我们在使用Redis缓存时要特别注意的:当数据修改成为脏数据时,需要在数据库中也把数据修改过来。
选择哪种缓存策略是值得我们多加琢磨的,它在筛选数据方面是否能筛选出可能被再次访问的数据,直接决定了缓存效率的高与低。
很简单的一个对比,如果我们使用随机策略,刚筛选出来的要被删除的数据可能正好又被访问了,此时应用就只能花费几毫秒从数据库中读取数据了。而如果使用LRU策略,被筛选出来的数据往往是经过时间验证了,如果在一段时间内一直没有访问,本身被再次访问的概率也很低了。
所以,我给你的建议是,先根据是否有始终会被频繁访问的数据(例如置顶消息),来选择淘汰数据的候选集,也就是决定是针对所有数据进行淘汰,还是针对设置了过期时间的数据进行淘汰。候选数据集范围选定后,建议优先使用LRU算法,也就是,allkeys-lru或volatile-lru策略。
当然,设置缓存容量的大小也很重要,我的建议是:结合实际应用的数据总量、热数据的体量,以及成本预算,把缓存空间大小设置在总数据量的15%到30%这个区间就可以。
按照惯例,我给你提一个小问题。这节课,我向你介绍了Redis缓存在应对脏数据时,需要在数据修改的同时,也把它写回数据库,针对我们上节课介绍的缓存读写模式:只读缓存,以及读写缓存中的两种写回策略,请你思考下,Redis缓存对应哪一种或哪几种模式?
欢迎在留言区写下你的思考和答案,我们一起交流讨论。如果你觉得今天的内容对你有所帮助,也欢迎你分享给你的朋友或/同事。我们下节课见。