你好,我是蒋德钧。
我们知道,Redis提供了高性能的数据存取功能,所以广泛应用在缓存场景中,既能有效地提升业务应用的响应速度,还可以避免把高并发大压力的请求发送到数据库层。
但是,如果Redis做缓存时出现了问题,比如说缓存失效,那么,大量请求就会直接积压到数据库层,必然会给数据库带来巨大的压力,很可能会导致数据库宕机或是故障,那么,业务应用就没有办法存取数据、响应用户请求了。这种生产事故,肯定不是我们希望看到的。
正因为Redis用作缓存的普遍性以及它在业务应用中的重要作用,所以,我们需要系统地掌握缓存的一系列内容,包括工作原理、替换策略、异常处理和扩展机制。具体来说,我们需要解决四个关键问题:
这节课,我们来了解下缓存的特征和Redis适用于缓存的天然优势,以及Redis缓存的具体工作机制。
要想弄明白Redis为什么适合用作缓存,我们得清楚缓存都有什么特征。
首先,你要知道,一个系统中的不同层之间的访问速度不一样,所以我们才需要缓存,这样就可以把一些需要频繁访问的数据放在缓存中,以加快它们的访问速度。
为了让你能更好地理解,我以计算机系统为例,来解释一下。下图是计算机系统中的三层存储结构,以及它们各自的常用容量和访问性能。最上面是处理器,中间是内存,最下面是磁盘。
从图上可以看到,CPU、内存和磁盘这三层的访问速度从几十ns到100ns,再到几ms,性能的差异很大。
想象一下,如果每次CPU处理数据时,都要从ms级别的慢速磁盘中读取数据,然后再进行处理,那么,CPU只能等磁盘的数据传输完成。这样一来,高速的CPU就被慢速的磁盘拖累了,整个计算机系统的运行速度会变得非常慢。
所以,计算机系统中,默认有两种缓存:
跟内存相比,LLC的访问速度更快,而跟磁盘相比,内存的访问是更快的。所以,我们可以看出来缓存的 第一个特征:在一个层次化的系统中,缓存一定是一个快速子系统,数据存在缓存中时,能避免每次从慢速子系统中存取数据。对应到互联网应用来说,Redis就是快速子系统,而数据库就是慢速子系统了。
知道了这一点,你就能理解,为什么我们必须想尽办法让Redis提供高性能的访问,因为,如果访问速度很慢,Redis作为缓存的价值就不大了。
我们再看一下刚才的计算机分层结构。LLC的大小是MB级别,page cache的大小是GB级别,而磁盘的大小是TB级别。这其实包含了缓存的 第二个特征:缓存系统的容量大小总是小于后端慢速系统的,我们不可能把所有数据都放在缓存系统中。
这个很有意思,它表明,缓存的容量终究是有限的,缓存中的数据量也是有限的,肯定是没法时刻都满足访问需求的。所以,缓存和后端慢速系统之间,必然存在数据写回和再读取的交互过程。简单来说,缓存中的数据需要按一定规则淘汰出去,写回后端系统,而新的数据又要从后端系统中读取进来,写入缓存。
说到这儿,你肯定会想到,Redis本身是支持按一定规则淘汰数据的,相当于实现了缓存的数据淘汰,其实,这也是Redis适合用作缓存的一个重要原因。
好了,我们现在了解了缓存的两个重要特征,那么,接下来,我们就来学习下,缓存是怎么处理请求的。实际上,业务应用在访问Redis缓存中的数据时,数据不一定存在,因此,处理的方式也不同。
把Redis用作缓存时,我们会把Redis部署在数据库的前端,业务应用在访问数据时,会先查询Redis中是否保存了相应的数据。此时,根据数据是否存在缓存中,会有两种情况。
我画了一张图,清晰地展示了发生缓存命中或缺失时,应用读取数据的情况,你可以看下这张图片。
假设我们在一个Web应用中,使用Redis作为缓存。用户请求发送给Tomcat,Tomcat负责处理业务逻辑。如果要访问数据,就需要从MySQL中读写数据。那么,我们可以把Redis部署在MySQL前端。如果访问的数据在Redis中,此时缓存命中,Tomcat可以直接从Redis中读取数据,加速应用的访问。否则,Tomcat就需要从慢速的数据库中读取数据了。
到这里,你可能已经发现了,使用Redis缓存时,我们基本有三个操作:
那么,这些操作具体是由谁来做的呢?这和Redis缓存的使用方式相关。接下来,我就来和你聊聊Redis作为旁路缓存的使用操作方式。
Redis是一个独立的系统软件,和业务应用程序是两个软件,当我们部署了Redis实例后,它只会被动地等待客户端发送请求,然后再进行处理。所以,如果应用程序想要使用Redis缓存,我们就要在程序中增加相应的缓存操作代码。所以,我们也把Redis称为旁路缓存,也就是说,读取缓存、读取数据库和更新缓存的操作都需要在应用程序中来完成。
这和我刚才讲的计算机系统中的LLC和page cache不一样。你可以回想下,平时在开发程序时,我们是没有专门在代码中显式地创建LLC或page cache的实例的,也没有显式调用过它们的GET接口。这是因为,我们在构建计算机硬件系统时,已经把LLC和page cache放在了应用程序的数据访问路径上,应用程序访问数据时直接就能用上缓存。
那么,使用Redis缓存时,具体来说,我们需要在应用程序中增加三方面的代码:
那么,代码应该怎么加呢?我给你展示一段Web应用中使用Redis缓存的伪代码示例。
String cacheKey = “productid_11010003”;
String cacheValue = redisCache.get(cacheKey);
//缓存命中
if ( cacheValue != NULL)
return cacheValue;
//缓存缺失
else
cacheValue = getProductFromDB();
redisCache.put(cacheValue) //缓存更新
可以看到,为了使用缓存,Web应用程序需要有一个表示缓存系统的实例对象redisCache,还需要主动调用Redis的GET接口,并且要处理缓存命中和缓存缺失时的逻辑,例如在缓存缺失时,需要更新缓存。
了解了这一点,我们在使用Redis缓存时,有一个地方就需要注意了:因为需要新增程序代码来使用缓存,所以,Redis并不适用于那些无法获得源码的应用,例如一些很早之前开发的应用程序,它们的源码已经没有再维护了,或者是第三方供应商开发的应用,没有提供源码,所以,我们就没有办法在这些应用中进行缓存操作。
在使用旁路缓存时,我们需要在应用程序中增加操作代码,增加了使用Redis缓存的额外工作量,但是,也正因为Redis是旁路缓存,是一个独立的系统,我们可以单独对Redis缓存进行扩容或性能优化。而且,只要保持操作接口不变,我们在应用程序中增加的代码就不用再修改了。
好了,到这里,我们知道了,通过在应用程序中加入Redis的操作代码,我们可以让应用程序使用Redis缓存数据了。不过,除了从Redis缓存中查询、读取数据以外,应用程序还可能会对数据进行修改,这时,我们既可以在缓存中修改,也可以在后端数据库中进行修改,我们该怎么选择呢?
其实,这就涉及到了Redis缓存的两种类型:只读缓存和读写缓存。只读缓存能加速读请求,而读写缓存可以同时加速读写请求。而且,读写缓存又有两种数据写回策略,可以让我们根据业务需求,在保证性能和保证数据可靠性之间进行选择。所以,接下来,我们来具体了解下Redis的缓存类型和相应的写回策略。
按照Redis缓存是否接受写请求,我们可以把它分成只读缓存和读写缓存。先来了解下只读缓存。
当Redis用作只读缓存时,应用要读取数据的话,会先调用Redis GET接口,查询数据是否存在。而所有的数据写请求,会直接发往后端的数据库,在数据库中增删改。对于删改的数据来说,如果Redis已经缓存了相应的数据,应用需要把这些缓存的数据删除,Redis中就没有这些数据了。
当应用再次读取这些数据时,会发生缓存缺失,应用会把这些数据从数据库中读出来,并写到缓存中。这样一来,这些数据后续再被读取时,就可以直接从缓存中获取了,能起到加速访问的效果。
我给你举个例子。假设业务应用要修改数据A,此时,数据A在Redis中也缓存了,那么,应用会先直接在数据库里修改A,并把Redis中的A删除。等到应用需要读取数据A时,会发生缓存缺失,此时,应用从数据库中读取A,并写入Redis,以便后续请求从缓存中直接读取,如下图所示:
只读缓存直接在数据库中更新数据的好处是,所有最新的数据都在数据库中,而数据库是提供数据可靠性保障的,这些数据不会有丢失的风险。当我们需要缓存图片、短视频这些用户只读的数据时,就可以使用只读缓存这个类型了。
知道了只读缓存,读写缓存也就很容易理解了。
对于读写缓存来说,除了读请求会发送到缓存进行处理(直接在缓存中查询数据是否存在),所有的写请求也会发送到缓存,在缓存中直接对数据进行增删改操作。此时,得益于Redis的高性能访问特性,数据的增删改操作可以在缓存中快速完成,处理结果也会快速返回给业务应用,这就可以提升业务应用的响应速度。
但是,和只读缓存不一样的是,在使用读写缓存时,最新的数据是在Redis中,而Redis是内存数据库,一旦出现掉电或宕机,内存中的数据就会丢失。这也就是说,应用的最新数据可能会丢失,给应用业务带来风险。
所以,根据业务应用对数据可靠性和缓存性能的不同要求,我们会有同步直写和异步写回两种策略。其中,同步直写策略优先保证数据可靠性,而异步写回策略优先提供快速响应。学习了解这两种策略,可以帮助我们根据业务需求,做出正确的设计选择。
接下来,我们来具体看下这两种策略。
同步直写是指,写请求发给缓存的同时,也会发给后端数据库进行处理,等到缓存和数据库都写完数据,才给客户端返回。这样,即使缓存宕机或发生故障,最新的数据仍然保存在数据库中,这就提供了数据可靠性保证。
不过,同步直写会降低缓存的访问性能。这是因为缓存中处理写请求的速度是很快的,而数据库处理写请求的速度较慢。即使缓存很快地处理了写请求,也需要等待数据库处理完所有的写请求,才能给应用返回结果,这就增加了缓存的响应延迟。
而异步写回策略,则是优先考虑了响应延迟。此时,所有写请求都先在缓存中处理。等到这些增改的数据要被从缓存中淘汰出来时,缓存将它们写回后端数据库。这样一来,处理这些数据的操作是在缓存中进行的,很快就能完成。只不过,如果发生了掉电,而它们还没有被写回数据库,就会有丢失的风险了。
为了便于你理解,我也画了下面这张图,你可以看下。
关于是选择只读缓存,还是读写缓存,主要看我们对写请求是否有加速的需求。
举个例子,在商品大促的场景中,商品的库存信息会一直被修改。如果每次修改都需到数据库中处理,就会拖慢整个应用,此时,我们通常会选择读写缓存的模式。而在短视频App的场景中,虽然视频的属性有很多,但是,一般确定后,修改并不频繁,此时,在数据库中进行修改对缓存影响不大,所以只读缓存模式是一个合适的选择。
今天,我们学习了缓存的两个特征,分别是在分层系统中,数据暂存在快速子系统中有助于加速访问;缓存容量有限,缓存写满时,数据需要被淘汰。而Redis天然就具有高性能访问和数据淘汰机制,正好符合缓存的这两个特征的要求,所以非常适合用作缓存。
另外,我们还学习了Redis作为旁路缓存的特性,旁路缓存就意味着需要在应用程序中新增缓存逻辑处理的代码。当然,如果是无法修改源码的应用场景,就不能使用Redis做缓存了。
Redis做缓存时,还有两种模式,分别是只读缓存和读写缓存。其中,读写缓存还提供了同步直写和异步写回这两种模式,同步直写模式侧重于保证数据可靠性,而异步写回模式则侧重于提供低延迟访问,我们要根据实际的业务场景需求来进行选择。
这节课,虽然我提到了Redis有数据淘汰机制,但是并没有展开讲具体的淘汰策略。那么,Redis究竟是怎么淘汰数据的呢?我会在下节课给你具体介绍。
按照惯例,我给你提一个小问题。这节课,我提到了Redis只读缓存和使用直写策略的读写缓存,这两种缓存都会把数据同步写到后端数据库中,你觉得,它们有什么区别吗?
欢迎在留言区写下你的思考和答案,我们一起交流讨论。如果你觉得今天的内容对你有所帮助,也欢迎你分享给你的朋友或同事。我们下节课见。