design-patterns-course

30 | 理论四:如何通过封装、抽象、模块化、中间层等解耦代码?

前面我们讲到,重构可以分为大规模高层重构(简称“大型重构”)和小规模低层次重构(简称“小型重构”)。大型重构是对系统、模块、代码结构、类之间关系等顶层代码设计进行的重构。对于大型重构来说,今天我们重点讲解最有效的一个手段,那就是“解耦”。解耦的目的是实现代码高内聚、松耦合。关于解耦,我准备分下面三个部分来给你讲解。

话不多说,现在就让我们正式开始今天的学习吧!

“解耦”为何如此重要?

软件设计与开发最重要的工作之一就是应对复杂性。人处理复杂性的能力是有限的。过于复杂的代码往往在可读性、可维护性上都不友好。那如何来控制代码的复杂性呢?手段有很多,我个人认为,最关键的就是解耦,保证代码松耦合、高内聚。如果说重构是保证代码质量不至于腐化到无可救药地步的有效手段,那么利用解耦的方法对代码重构,就是保证代码不至于复杂到无法控制的有效手段。

我们在 第22讲 有介绍,什么是“高内聚、松耦合”。如果印象不深,你可以再去回顾一下。实际上,“高内聚、松耦合”是一个比较通用的设计思想,不仅可以指导细粒度的类和类之间关系的设计,还能指导粗粒度的系统、架构、模块的设计。相对于编码规范,它能够在更高层次上提高代码的可读性和可维护性。

不管是阅读代码还是修改代码,“高内聚、松耦合”的特性可以让我们聚焦在某一模块或类中,不需要了解太多其他模块或类的代码,让我们的焦点不至于过于发散,降低了阅读和修改代码的难度。而且,因为依赖关系简单,耦合小,修改代码不至于牵一发而动全身,代码改动比较集中,引入bug的风险也就减少了很多。同时,“高内聚、松耦合”的代码可测试性也更加好,容易mock或者很少需要mock外部依赖的模块或者类。

除此之外,代码“高内聚、松耦合”,也就意味着,代码结构清晰、分层和模块化合理、依赖关系简单、模块或类之间的耦合小,那代码整体的质量就不会差。即便某个具体的类或者模块设计得不怎么合理,代码质量不怎么高,影响的范围是非常有限的。我们可以聚焦于这个模块或者类,做相应的小型重构。而相对于代码结构的调整,这种改动范围比较集中的小型重构的难度就容易多了。

代码是否需要“解耦”?

那现在问题来了,我们该怎么判断代码的耦合程度呢?或者说,怎么判断代码是否符合“高内聚、松耦合”呢?再或者说,如何判断系统是否需要解耦重构呢?

间接的衡量标准有很多,前面我们讲到了一些,比如,看修改代码会不会牵一发而动全身。除此之外,还有一个直接的衡量标准,也是我在阅读源码的时候经常会用到的,那就是把模块与模块之间、类与类之间的依赖关系画出来,根据依赖关系图的复杂性来判断是否需要解耦重构。

如果依赖关系复杂、混乱,那从代码结构上来讲,可读性和可维护性肯定不是太好,那我们就需要考虑是否可以通过解耦的方法,让依赖关系变得清晰、简单。当然,这种判断还是有比较强的主观色彩,但是可以作为一种参考和梳理依赖的手段,配合间接的衡量标准一块来使用。

如何给代码“解耦”?

前面我们能讲了解耦的重要性,以及如何判断是否需要解耦,接下来,我们再来看一下,如何进行解耦。

1.封装与抽象

封装和抽象作为两个非常通用的设计思想,可以应用在很多设计场景中,比如系统、模块、lib、组件、接口、类等等的设计。封装和抽象可以有效地隐藏实现的复杂性,隔离实现的易变性,给依赖的模块提供稳定且易用的抽象接口。

比如,Unix系统提供的open()文件操作函数,我们用起来非常简单,但是底层实现却非常复杂,涉及权限控制、并发控制、物理存储等等。我们通过将其封装成一个抽象的open()函数,能够有效控制代码复杂性的蔓延,将复杂性封装在局部代码中。除此之外,因为open()函数基于抽象而非具体的实现来定义,所以我们在改动open()函数的底层实现的时候,并不需要改动依赖它的上层代码,也符合我们前面提到的“高内聚、松耦合”代码的评判标准。

2.中间层

引入中间层能简化模块或类之间的依赖关系。下面这张图是引入中间层前后的依赖关系对比图。在引入数据存储中间层之前,A、B、C三个模块都要依赖内存一级缓存、Redis二级缓存、DB持久化存储三个模块。在引入中间层之后,三个模块只需要依赖数据存储一个模块即可。从图上可以看出,中间层的引入明显地简化了依赖关系,让代码结构更加清晰。

除此之外,我们在进行重构的时候,引入中间层可以起到过渡的作用,能够让开发和重构同步进行,不互相干扰。比如,某个接口设计得有问题,我们需要修改它的定义,同时,所有调用这个接口的代码都要做相应的改动。如果新开发的代码也用到这个接口,那开发就跟重构冲突了。为了让重构能小步快跑,我们可以分下面四个阶段来完成接口的修改。

这样,每个阶段的开发工作量都不会很大,都可以在很短的时间内完成。重构跟开发冲突的概率也变小了。

3.模块化

模块化是构建复杂系统常用的手段。不仅在软件行业,在建筑、机械制造等行业,这个手段也非常有用。对于一个大型复杂系统来说,没有人能掌控所有的细节。之所以我们能搭建出如此复杂的系统,并且能维护得了,最主要的原因就是将系统划分成各个独立的模块,让不同的人负责不同的模块,这样即便在不了解全部细节的情况下,管理者也能协调各个模块,让整个系统有效运转。

聚焦到软件开发上面,很多大型软件(比如Windows)之所以能做到几百、上千人有条不紊地协作开发,也归功于模块化做得好。不同的模块之间通过API来进行通信,每个模块之间耦合很小,每个小的团队聚焦于一个独立的高内聚模块来开发,最终像搭积木一样将各个模块组装起来,构建成一个超级复杂的系统。

我们再聚焦到代码层面。合理地划分模块能有效地解耦代码,提高代码的可读性和可维护性。所以,我们在开发代码的时候,一定要有模块化意识,将每个模块都当作一个独立的lib一样来开发,只提供封装了内部实现细节的接口给其他模块使用,这样可以减少不同模块之间的耦合度。

实际上,从刚刚的讲解中我们也可以发现,模块化的思想无处不在,像SOA、微服务、lib库、系统内模块划分,甚至是类、函数的设计,都体现了模块化思想。如果追本溯源,模块化思想更加本质的东西就是分而治之。

4.其他设计思想和原则

“高内聚、松耦合”是一个非常重要的设计思想,能够有效提高代码的可读性和可维护性,缩小功能改动导致的代码改动范围。实际上,在前面的章节中,我们已经多次提到过这个设计思想。很多设计原则都以实现代码的“高内聚、松耦合”为目的。我们来一块总结回顾一下都有哪些原则。

我们前面提到,内聚性和耦合性并非独立的。高内聚会让代码更加松耦合,而实现高内聚的重要指导原则就是单一职责原则。模块或者类的职责设计得单一,而不是大而全,那依赖它的类和它依赖的类就会比较少,代码耦合也就相应的降低了。

基于接口而非实现编程能通过接口这样一个中间层,隔离变化和具体的实现。这样做的好处是,在有依赖关系的两个模块或类之间,一个模块或者类的改动,不会影响到另一个模块或类。实际上,这就相当于将一种强依赖关系(强耦合)解耦为了弱依赖关系(弱耦合)。

跟基于接口而非实现编程思想类似,依赖注入也是将代码之间的强耦合变为弱耦合。尽管依赖注入无法将本应该有依赖关系的两个类,解耦为没有依赖关系,但可以让耦合关系没那么紧密,容易做到插拔替换。

我们知道,继承是一种强依赖关系,父类与子类高度耦合,且这种耦合关系非常脆弱,牵一发而动全身,父类的每一次改动都会影响所有的子类。相反,组合关系是一种弱依赖关系,这种关系更加灵活,所以,对于继承结构比较复杂的代码,利用组合来替换继承,也是一种解耦的有效手段。

迪米特法则讲的是,不该有直接依赖关系的类之间,不要有依赖;有依赖关系的类之间,尽量只依赖必要的接口。从定义上,我们明显可以看出,这条原则的目的就是为了实现代码的松耦合。至于如何应用这条原则来解耦代码,你可以回过头去阅读一下第22讲,这里我就不赘述了。

除了上面讲到的这些设计思想和原则之外,还有一些设计模式也是为了解耦依赖,比如观察者模式,有关这一部分的内容,我们留在设计模式模块中慢慢讲解。

重点回顾

好了,今天的内容到此就讲完了。我们来一块总结回顾一下,你需要重点掌握的内容。

1.“解耦”为何如此重要?

过于复杂的代码往往在可读性、可维护性上都不友好。解耦保证代码松耦合、高内聚,是控制代码复杂度的有效手段。代码高内聚、松耦合,也就是意味着,代码结构清晰、分层模块化合理、依赖关系简单、模块或类之间的耦合小,那代码整体的质量就不会差。

2.代码是否需要“解耦”?

间接的衡量标准有很多,比如,看修改代码是否牵一发而动全身。直接的衡量标准是把模块与模块、类与类之间的依赖关系画出来,根据依赖关系图的复杂性来判断是否需要解耦重构。

3.如何给代码“解耦”?

给代码解耦的方法有:封装与抽象、中间层、模块化,以及一些其他的设计思想与原则,比如:单一职责原则、基于接口而非实现编程、依赖注入、多用组合少用继承、迪米特法则等。当然,还有一些设计模式,比如观察者模式。

课堂讨论

实际上,在我们平时的开发中,解耦的思想到处可见,比如,Spring中的AOP能实现业务与非业务代码的解耦,IOC能实现对象的构造和使用的解耦。除此之外,你还能想到哪些解耦的应用场景吗?

欢迎在留言区写下你的思考和答案,和同学一起交流和分享。如果有收获,也欢迎你把这篇文章分享给你的朋友。